THE "MATTHEW EFFECT" IN R&D PUBLIC SUBSIDIES: 
THE ITALIAN EVIDENCE ¹

Cristiano Antonelli
Dipartimento di Economia, Università di Torino
and BRICK, Collegio Carlo Alberto.

Francesco Crespi
Corresponding author: crespi@uniroma3.it
Dipartimento di Economia, Università Roma Tre
and BRICK, Collegio Carlo Alberto.

Abstract

Public policy plays a key role in supporting R&D activities and a variety of policy tools have been applied to contrast the undersupply of technological knowledge including the provision of subsidies to private firms performing R&D activities. A large literature has identified the sources of ‘government failures’ in discretionary procedures in problems related to asymmetric information and the operation of interest groups. This paper explores the causes and effects of persistence in the discretionary allocation of public subsidies to R&D activities performed by private firms and elaborates a crucial distinction between vicious Matthew-effects and virtuous Matthew-effects. The latter identifies the role of dynamics increasing returns based upon accumulation of competence stemming from learning, learning to learn and knowledge cumulability. On the contrary vicious Matthew-effects lead to substitution of private funds with public ones and represent an additional source of ‘government failure’ which has not been specifically addressed by previous literature. The empirical analysis based upon Transition Probability Matrices, Probit regression and Propensity Score Matching tested the relevance of these arguments on a sample of about 750 Italian firms in the years 1998-2003. Our results show that the persistence in the discretionary allocation of public subsidies is relevant and that virtuous Matthew-effects prevail when a ‘picking the winner strategy’ is adopted by granting authorities. We conclude that while the decision to rely on discretionary incentives based on beauty context selection procedures may imply relevant costs, their benefits can be increased by pursuing a ‘picking the winner strategy’.

KEY-WORDS: R&D SUBSIDIES; PERSISTENCE; GOVERNMENT FAILURES, MATTHEW EFFECTS

JEL CLASSIFICATION: H25, H32, L52

¹ The authors acknowledge comments and suggestions by Paolo Liberati and by participants to the SIEPI Conference held in Rome in January, 2011. This paper contributes the research project ‘Policy Incentives for the Creation of Knowledge: Methods and Evidence’ (PICK-ME), funded by the European Union D.G. Research with the Grant number 266959 to the within the context Cooperation Program / Theme 8 / Socio-economic Sciences and Humanities (SSH). The support of the Collegio Carlo Alberto, the University of Torino, and the Roma Tre University is also gratefully acknowledged. The usual disclaimers apply.
1. Introduction

A large literature has identified the case for a substantial market failure in the
identification of the correct amount of resources that markets are able to invest in
the generation of technological and scientific knowledge (Nelson, 1959; Arrow,
1962a). The intervention of the state to compensate for such underinvestment has
been repeatedly advocated and significant amounts of public funds have been spent
on programs to stimulate not only the generation of new scientific knowledge in
research institutions, but also to support innovative activities performed by private
firms (OECD, 2007).

However, the actual impact of R&D subsidies on firm’s innovative activities is not
obvious and it is possible that public subsidies crowd-out private investment (David
and Hall, 2000; David et al., 2000; Hall and van Reenen, 2000; Bloom et al., 2002).
A number of explanations have been provided for the potential ineffectiveness of
public R&D incentives. In particular, the following arguments appear to be relevant
for understanding the sources of ‘government failures’ in this context, which might
be as large or even larger than the ‘market failure’ it is supposed to correct (Nelson,
1980). The first is related to the problem of asymmetric information and the
consequent difficulty of policymakers and program officials to know which firms to
favour (Grossman, 1991; Stiglitz and Wallsten, 2000). Moreover, interest group
theories argue that the possibility of receiving some kind of public support gives
industries and other interest groups an incentive to invest large resources in
unproductive rent-seeking activities such as lobbying (see e.g. Tollison, 1997).

Therefore, irrespective of the information problems governments have, politicians
try to maximise votes and to allocate subsidies optimally from a political point of
view, by responding to the requests of interest groups (see e.g. Peltzman, 1976;
Olson, 1982; Mitchell and Munger, 1991; Magee, 1997). In addition to this, the
efficiency of public support for R&D activities may be further harmed if
bureaucrats seek to maximize their own utility and the distribution scheme is
consequently designed to achieve the goal of the bureaucrat himself (Link, 1977).

The allocation of public subsidies takes place either with automatic procedures,
typically associated with tax expenditures, or with discretionary beauty context
procedures based upon the assessment of the quality of the research programmes.
The main theoretical as well as practical difference between subsidizing R&D by tax
credits rather than by a direct grant is that the former is neutral with respect to
industry or sector and the characteristics of the firm. The most important advantage
of tax credit programs relative to direct grants is that they minimize the
discretionary decisions involved in project selection for direct government grants
(Bozeman and Link, 1984). However, much literature has criticized automatic
procedures, mainly based upon tax incentives, and praised the positive effects of
discretionary procedures based upon the actual screening of the research projects.
The former risk, in fact, to provide support to an array of activities that often do not
actually consist in research activities performed by firms that are not actually able to
carry out properly research programmes and to make an effective use of the
subsidies. The risks of opportunistic behaviour moreover seem to be very high.
Firms label some expenses as finalized to research activities while they actually fund other kinds of business activities vaguely related to research: the effective control of public authorities is almost impossible. In parallel, the lobbying activities of firms exert relevant pressure on government authorities in order to obtain changes in the definitions of what counted as R&D as to broadening allowable costs (Alt et al., 2010).

Moreover, according to David et al. (2000), private firms are likely to use any tax credits to first fund projects with the highest private rate of return. For this reason they argue that tax credit users are likely to concentrate their research efforts on projects with short term prospects. These are not necessarily the projects that would most deserve public support, which should concentrate on projects with the largest gap between social and private returns. The availability of tax credits is therefore unlikely to increase the probability that the users will undertake projects with high social and low private rate of return. Hence, even though tax credits represent an agile way of providing public support to R&D and to reduce problems related to ‘government failure’, they do not appear to be the most efficient tool to correct the ‘market failure’ (Shane, 2009). On the opposite R&D grants are potentially better suited to fill the gap between the private and social returns to innovation not only for the higher chances to select and hence support better research projects, but also because this allocation procedure of public subsidies can help identifying and supporting potential complementarities among innovative projects (Milgrom and Roberts, 1995; Mohnen and Roller, 2005). As a matter of fact many countries do rely on discretionary incentives based on beauty context selection procedures, even though this may come at a cost.

A considerable amount of evidence upon the effectiveness of discretionary grants and on the persistence in their allocation to past recipients has now become available. The identification of such persistency has engendered much perplexity upon the actual reliability of selective procedures and their limitations. In the present paper we claim that it is important to qualify the persistency, whether it is actually and necessarily dysfunctional, or it may be even fruitful from a dynamic efficiency viewpoint and, hence, that it is necessary to enquire about the causes and the effects of persistency in the provision of public subsidies. In doing so we apply to research policy the notion of Matthew effect drawn from the economics of science to assess the causes and effects of the persistency in the assignment of R&D subsidies (Merton, 1968; Arora and Gambardella, 1997; Rigney, 2010). In order to highlight the relevance of this issue, we propose the distinction between virtuous and vicious Matthew effects. The former consist in the persistency of the provision of subsidies to firms that have been actually able to use previous subsidies to effectively increase their R&D activities. The latter include the cases of persistency in the assignment of public subsidies based on sheer reputation, even to firms that have actually reduced their commitment to research after receiving previous subsidies. The vicious case identifies an additional potential source of ‘government failure’ in the provision of R&D grants, which has not been discussed by previous literature on the subject. On the contrary in the virtuous case public authorities can be right in confirming their preferences for firms that have taken advantage of
previous grants simply because their projects embody a larger amount of inputs, higher levels of competence and expertise and hence are simply of a higher and better quality. In this context we claim that Matthew effects would be consistent and would complement a strategy of ‘picking the winners’ in the provision of public subsidies to R&D, by replacing pure arbitrary criteria that might be adopted by selection committees in the absence of such a constraining strategy and, consequently, increasing the efficiency of public support to firms’ innovative activities (Cantner and Kösters, 2009).

The relevance of these arguments is empirically tested by implementing the framework of analysis based on transition probabilities between states and by developing an original model on the determinants of firm’s access to R&D grants. This model is designed to assess whether it is possible to identify a *virtuous* effect consistent with a ‘picking the winners strategy’, that is past grants increase the innovative performance of benefited firms and consequently the probability to access further funding, or a *vicious* effect so that the past success in receiving public support increases the probability of gaining access to public funding independently from firms’ innovative competence and results. This issue is further investigated through an evaluation impact analysis based on the Propensity Score Matching method. This allows us to assess the effect of public grants on firm’s R&D intensity providing complementary evidence on the nature of the identified persistence.

The empirical analysis is based on the rich information contained in two waves of the Survey on Italian Manufacturing Firms realised by the Unicredit Group. Each wave collects contemporary and retrospective (previous three years) data from samples of more than four thousand firms. In order to obtain a dataset for the study, with two distinct points of observation, it has been necessary to merge the two waves (covering the years from 1998 to 2003). The matched database, containing data for the years 1998-2003, covers around 750 manufacturing firms observed in both the two periods.

The empirical results show that past grants increase the probability to access further funding. Both the descriptive and econometric evidences confirm our hypothesis on the persistent character of R&D subsidies, that can be interpreted as an indication that some mechanisms related to a Matthew effect is at work for the observed firms. Moreover, the results suggest that the stable pattern in the access to R&D public subsidies by firms is associated with a ‘picking the winner’ strategy adopted by public authorities, which, positively contributed to the effectiveness of the policy instrument.

2. The Matthew effect in R&D subsidies

The anecdotic evidence about the selective assignment of public subsidies to R&D activities performed by private firms, based upon discretionary procedures aimed at the identification and assessment of the actual quality of the research projects that deserve to be funded with public money, suggests that major ‘government failures’ may take place. Discretionary procedures to select public subsidies to R&D projects proposed by private firms are based upon the working of
Committees of experts appointed by the Ministry and other Intermediary Agencies. The Committees select the projects according to their scientific and technological relevance and to their assessment of the capability of firms to actually perform and finalize the research programmes. It is a typical beauty context characterized by major information asymmetries: the members of the Committees have limited information upon the actual capabilities of the firm to conduct the specific research programmes that are being proposed. Moreover, the work by Committees might be influenced by the pressures exerted by interest groups which invest large resources in unproductive rent-seeking activities.

For these reasons many criticisms have emerged and the basic question concerns the limitations of the procedure and the possible biases in the selection procedures. However, in this context little attention has been devoted to the determinants and the effects of persistence in the provision of public subsidies. Such considerations appear to be relevant in the light of the argument based on the Mertonian ‘Matthew effect’, according to which the public assessment of the quality of scientific research is related to previous accomplishments. As Merton noted: “…eminent scientists get disproportionately great credit for their contributions to science while unknown scientists tend to get disproportionately little credit for comparable contributions” (Merton, 1968:57). While in the economics of science the ‘Matthew effect’ hypothesis has received considerable attention (David and Gambardella, 1997; Arora et al., 1998; Medoff, 2006), the relevance of this argument has not been properly elaborated in the economics of innovation policy. Following a typical recombinatory process we believe that the transfer and application of the issues and methodological results of the Matthew effect away from the economics of science into the economics of innovation policy can yield interesting results.

At a first sight it is possible to directly and quite abruptly apply the quote from Merton to the specific context of the provision of public subsidies based upon the assessment of the quality of the research programs and articulate the view that the past ability of firms to receive public support for R&D activities would in fact generate some dysfunctional persistence effects in the probability of gaining access to public funding, even independently from their actual innovative efforts. Along this view, a 41st chair effect risks to take place in the provision of public subsidies and valiant research programmes presented by unknown firms risk to be deprived of the deserved public support with very negative effects in terms of waste of resources, misallocation of public money and losses associated with the delay and the possible decay of relevant research programmes. Following this line of analysis the criticisms to the selection procedures based upon the perceived quality of the research projects and of the firms performing them, is enriched by the argument that the experts that are members of the selection committees would be too much influenced by the scientific and technological reputation of the candidates, rather than by the sheer quality of the projects. Actually the reputation of the candidates would become a reliable proxy for the quality of the projects. Such reputation would be strongly influenced by previous awards and specifically by the inclusion in precedent assignment tournaments. The claim is that firms that have already received a selective subsidy based upon
discretionary procedures censed to screen their quality of the projects in the past have disproportionately higher chances to be selected again, simply because of their acquired reputation, and not because of a correct assessment of their actual efforts. According to these criticisms a *vicious* Matthew effect, i.e. a dysfunctional persistence, would take place in the selective allocation of public subsidies based upon beauty contexts.

However, in order to clarify whether the Matthew effect is exclusively dysfunctional, the careful reading of the original text by Robert Merton is necessary and it reveals that the issue is far from being univocal. As a matter of fact Merton elaborates two distinct arguments. Ex-post we can term the first an information economics argument and a knowledge economics the second, which lead us to propose the distinction between *vicious* and *virtuous* Matthew effects.

The first argument has been already considered and consists in a typical issue elaborated in information economics: search costs and information asymmetries. Authors (members of selection committees) read and cite (praise) better the work of eminent scientists (established firms that were recipients of previous subsidies) because their reputation helps screening the backlog of redundant information (excess number of applicants). Reputation reduces search costs and information asymmetries. Authors (members of selection committees), facing new articles (projects) that are supposed to be original and innovative, and hence such that they cannot command fully, are more ready to trusts established scientists (firms) rather than un-known ones. Once more, and yet for a different reason, they will cite (praise) more the articles (projects) proposed by established scientists (firms that have already won previous tournaments). The second argument stems from the careful reading of Robert Merton’s text: “The recognition accorded scientific achievements by the scientist's pier is a reward in the strict sense identified by Parson. As we shall see, such recognition can be converted into an instrumental asset as enlarged facilities are made available to the honoured scientists for further work...the reward system thus influences the 'class structure' of science by providing as stratified distribution of chances, among scientists, for enlarging their role as investigators” (Merton, 1968:57).

This second argument is well supported by the arrovian economics of knowledge (Arrow, 1962a, 1962b, 1969; David, 1994) on two different and yet complementary counts: a) authors (firms) who have been selected in previous tournaments are the persistent recipients of beauty context allocations because they had the opportunity to enlarge their role as investigators in terms of increased access to scarce research resources and the opportunity to concentrate and specialize in conducting their research. In this case past recipients should have performed larger flows of R&D activities, although partly funded by public grants; b) past recipients had the opportunity to learn to learn (Stiglitz, 1987). No surprise hence that in a successive tournament their scientific production, be articles for scientists or research projects for firms, will be actually and intrinsically better. Knowledge exhibits intrinsic cumulability both at the individual, organization and system levels. New knowledge is the result of the recombination of existing bits of knowledge: hence the larger the knowledge base under the command of each firm (author) and the larger the
chances to generate new technological (scientific) knowledge (Weitzman, 1996 and 1998). Firms and scientists that received additional resources to conduct research at time t-1, can take advantage of the knowledge generated in the past and climb at times t and t+1, on their own shoulders that will happen to be quite obviously higher and larger than the shoulders of third parties which could not benefit from previous assignment of dedicated resources. This amounts to argue that in the economics of R&D activities a positive relationship between the stock of existing competence and the output in terms of technological knowledge, for a given amount of current efforts, is at work. Consequently, in this second case the persistence effects do not necessarily identify an economic dysfunctionality. On the contrary, in this context a virtuous Matthew effect can be justified by the economics of knowledge. Readers and committees members might be perfectly right in confirming their preferences for scientists and firms that have taken advantage of previous awards, simply because their products embody a larger amount of inputs, higher levels of competence and expertise and hence are simply of a higher and better quality.

The proposed distinction between the two types of Matthew effects appears to be relevant in the light of recent advancements in the literature on public subsidies to firm’s innovative activities. These studies showed that a possible way to reduce ‘government failures’ in the allocation of subsidies and to increase the efficiency of public support to private companies is to follow a ‘picking-the-winner strategy’ (Shane, 2009; Cantner and Kösters, 2009). In so doing program agencies choose firms that are more experienced and capable or firms which are already on a high level of technological competence or on a promising strategic and technological path. Evidence for a policy focus on high potential and best-equipped firms has been recently found for example in the German case (Aschhoff, 2010; Hussinger, 2008; Cantner and Kösters, 2009), highlighting the advantages of adopting such a strategy.

In this context the observation of persistence in the access to R&D grants could be associated with a virtuous Matthew effect instead of a vicious one. The repeated and sequential selection of firms that were recipients of previous subsidies is in fact fully justified when and if they are able to implement and propose projects of a intrinsic higher quality because of the higher content in terms of R&D activities. These firms are currently able to perform more R&D and to support higher levels of talents of the scientific personnel at work within the firm. In this case in fact, the higher quality is made possible by the current levels of R&D activities augmented by the previous allocation of subsidies and hence the accumulation of knowledge and competence based upon learning processes activated at an earlier stage by previous subsidies.

Summing up, the identification of persistence in the allocation of R&D subsidies to private firms by means of discretionary selection procedures is not sufficient to claim that perverse dysfunctional processes are at work. The identification of the factors behind the emerging persistence and its effects both at the firm and the system level, in terms of actual dynamic efficiency, is necessary to qualify persistence from an economic and social viewpoint. The distinction between reputation
persistence based on sheer informational externalities and competence persistence based on the internal accumulation of higher skills and expertise and the broadening of the research base determined by the assignment of previous subsidies is crucial to assess the dynamic efficiency of the procedure. Following these arguments our hypotheses can be synthesized as it follows:

**H1:** Matthew effects are relevant. We expect that significant persistence is at work in the allocation of public subsidies by means of beauty context discretionary allocation procedures aimed at the identification of higher quality research projects.

**H2:** Matthew effects can be of two types. If a pure reputation *vicious* effect is at work we expect that in the allocation of R&D subsidies only the achievement of past grant is relevant in explaining the current access to public funds. On the contrary we expect that in the *virtuous* case the allocation of R&D subsidies can identify firms that are actually better able to persist and succeed in the pursuit of innovation strategies. Such persistence can be explained by their higher commitment to innovative activities and by the accumulation of expertise, tacit and codified knowledge by firms that had access to larger resources for a longer stretch of time to conduct research in the past, also because of the previous allocation of public subsidies. In this context Matthew effects would be consistent with a ‘picking the winners’ strategy, with potential benefits in the effectiveness of the adopted policy instrument.

### 3. Descriptive analysis and empirical strategy

#### 3.1 Empirical strategy

Consistently with the theoretical discussion, in our empirical analysis we follow three different but complementary approaches. The first aims at the identification of firm-level persistence in the access to R&D subsidies by means of Transition Probability Matrixes (TPM). The second explores the determinants of firm-level persistence in gaining public support by means of a probit model and qualify the allocation strategy pursued by public authorities in granting subsidies. Finally, the third applies a propensity score matching method to evaluate the impact of public subsidies on firms’ innovative investments. While the initial TPM approach is expected to provide only summary evidence on the persistence of firms’ access to R&D subsidies along time, the probit analysis aims at identifying the actual role of past subsidy history in determining the admission to subsequent support programs when relevant contingent factors are taken into account. In this way it will be possible to test the relevance of the Matthew effect and to obtain a first indication on the nature of the identified persistence, by verifying if it is consistent with a ‘picking the winner strategy’ adopted by granting committees. Moreover, the probit model will offer the statistical basis for an evaluation impact exercise which will allow us to obtain complementary insights on whether it is possible to identify a
A virtuous effect, that is past grants increase the innovative performance of benefited firms and consequently the probability to access further funding, or a pure reputational effect so that the past success in receiving public support increases the probability of gaining access to public funding independently from firms’ innovative results.

3.2 Database description

The analysis is based on a dataset derived from the questionnaire surveys developed originally by the investment bank Mediocrédito Centrale (MCC, now Unicredit), regarding a representative sample of Italian manufacturing firms with more than 11 employees. The original MCC database comes from two different questionnaire waves, each of them collecting contemporary and retrospective (previous three years) data from samples of more than 4000 firms. In order to obtain a dataset for our study, we merged two waves (covering years from 1998 to 2003). For the purposes of our analysis we restricted the sample to firms which invest in R&D activities and which have been observed in both the two waves of the survey. We finally cleaned the dataset by eliminating outliers and cases of M&As, ending up with a balanced dataset of 752 manufacturing firms observed two times over a 6-year period. The questionnaire survey collects information about firm structure and behaviour, including investment and innovation activities, internationalization strategies, financial characteristics and public grants and fiscal incentives. As the paper will discuss in detail, the richness of the information contained in the database and the possibility to observe both supported and non supported firms for two times in the considered period offers a high satisfactory information base to account for the role of firm’s past subsidy history in the analysis of the determinants of R&D subsidies and in the evaluation of their effectiveness.

Table 1 exhibits the sectoral composition of the sample, while Table 2 provides the basic descriptive statistics of the sample. The share of firms that accessed R&D subsidies were respectively 13.56% in the period 1998-2000 and 22.61% in the period 2001-2003. In the period 2001-2003, the companies included in the sample had an average number of employees equal to 139. Firms not receiving R&D subsidies are smaller than those that are granted a subsidy (115 employees vs. 222). This evidence is confirmed when turnover is taken into account, with an average turnover for subsidized firms of about 59 Millions of Euros and of about 33 Millions of Euros for non subsidised companies.

Subsidized firms are also more capital intensive, with a capital labour ratio value of about €5582 per worker against €5262 for non-subsidized ones. The same pattern holds for R&D investments and human resources devoted to R&D activities. Firms receiving grants are, on average, more R&D intensive than non benefiting ones (5242 Euros per worker invested in R&D vs. 2744 Euros), and employ a higher percentage of total workers in R&D activities (11.06% vs. 8.46%). However, as it will be subsequently clarified, such difference cannot be considered as an effect of
R&D subsidies since it may simply reflect the selective nature of the group of funded firms.

3.3 Descriptive analysis based on Transition Probability Matrixes

In this section we provide descriptive evidence on the extent of firm-level persistence in the access to R&D subsidies, using transition probability matrixes. This statistical tool allows to modelling the sequence of subsidized and non-subsidized states as a stochastic process approximated by a two-state Markov chain with transition probabilities:

\[
\begin{bmatrix}
q & 1-q \\
1-p & p
\end{bmatrix}
\]

Each term of the (2X2) TPM will be the conditional probability \( p_{ij} = P(I_t = j \mid I_{t-1} = i) \), or the probability of moving from state \( j \) to state \( i \).²

The analysis of the diagonal terms, based on estimated transition probabilities (Roper and Dundas, 2008), allows the identification of specific patterns of persistence. In the case of a 2-dimensional matrix there is evidence of persistence if the sum of the main diagonal terms is more than 1.

This applies to our data representing a first indication of the presence of some form of inter-temporal stability in the access to R&D subsidies that has to be qualified by looking in more details at our empirical findings (see Table 3). In particular, for the whole sample, while the probability of accessing public funding at time \( t \) for non-subsidized companies at \( t-1 \) is only 0.19, the probability of obtaining R&D subsidies in period \( t \) for subsidized firms in period \( t-1 \) is 0.45, that is more than the double. Symmetrically, the “negative” state dependence appears to be very strong in our

² Let \( P_{ij} \) and \( \hat{P}_{ij} \) denote the population and sample probabilities of a transition of a company from the status \( i \) to the status \( j \). This transition process can also be seen as the outcome of a binomial distribution. Hence, standard errors of the estimated transition probabilities can be calculated as a binomial standard deviation: \( \sqrt{P_{ij}^*(1-P_{ij})/N} \) where \( N \) equals the number of companies in status \( i \). As \( N \) increases \( \hat{P}_{ij} \) tends to \( P_{ij} \). In the matrixes that will be presented in our analysis the binomial process has just two possible outcomes, hence the estimated standard error is the same for the elements of each row in the 2X2 matrix.
sample, with 81% of non-subsidized companies in t-1 still not gaining access to public subsidies at time t.

The distinction between two (equally sized) groups of companies classified by dimension (Table 4) offers further insights to the analysis, highlighting that an higher level of state dependence in accessing public funds for R&D investments concerns companies with the largest number of employees. In this latter case, while the probability of accessing public funding at time t for non-subsidized companies at t-1 is 0.22, the probability of obtaining R&D subsidies in period t for subsidized firms in period t-1 is 0.48. The same probability is 0.40 for companies belonging to the group of smallest firms.

[Insert Table 4 here]

Finally, Table 5 presents the analysis of the TPMs based on two (equally sized) subsamples ordered in terms of firms’ R&D personnel intensity, which shows that the overall degree of state dependence in accessing R&D subsidies increases with the percentage of R&D personnel over total employees. In the case of companies belonging to the top 50% in terms of R&D personnel intensity strong “positive” state dependence is found, with a probability of obtaining grants in period t for subsidized firms in period t-1 equal to 0.5. Conversely, the “negative” state dependence decreases with the percentage of R&D personnel, with the share of non-subsidized companies in t-1 still not gaining access to public subsidies at time t falling from 0.85 (Low group) to 0.76 (High group).

[Insert Table 5 here]

The analysis conducted so far provides strong preliminary indications for state dependence in firm’s access to public funds for R&D investments, with differentiated patterns of persistence across crucial dimensions such as size or the intensity of R&D capabilities. It should be clear that such findings provide only a preliminary support about the relevance of persistence in the access to public R&D subsidies by firms. In fact they suggest the presence of some form of inter-temporal stability in getting public funds for firms’ innovative activities. However, they do not provide, yet, a sound indication on how much the observed persistence can be identified as a true state persistence, which would represent a more solid indication of the presence of operating mechanisms related to Matthew effects in the access to public support for R&D. The observed persistence can clearly be influenced by other factors, and the evidence provided in Tables 4 and 5 offers precise hints in this direction. The econometric analysis in the next section aims specifically at controlling for those factors in order to test the robustness of this result and eventually isolate true state persistence effects.
4. Econometric analysis

4.1 The probit model

In this section we present the econometric model that tests the determinants of the access to R&D public support with special attention to firm’s past subsidy history. The analysis is based on a probit model in which the dependent variable is affected by a set of exogenous control variables and by the lagged realization of the dependent variable. The presence of the lagged outcome variable allows us to test the hypothesis of true state dependence. In this way we aim at capturing the effect on firms’ current subsidy status of the event of being subsidized or not at time t-1.

In our econometric analysis we estimate a probit model of the event (Y=1) of receiving a public R&D subsidy that can be represented as follows:

$$\Pr(Y_{it} = 1 \mid X_{i,t-1}, Y_{i,t-1})$$  \hspace{1cm} (1)

where \(X_{i,t-1}\) is a vector of observable firm i’s characteristics at t-1 and \(Y_{i,t-1}\) the event of being subsidized or not at time t-1.

Control variables beside firms’ past R&D subsidy history have been selected in this study according to the empirical evidence that analysed this probability (Busom, 2000; Wallsten, 2000; Arvanitis et al., 2002; Almus and Czarnitzki, 2003; Duguet, 2004; Blanes and Busom, 2004; Görg, H. and E. Strobl, 2007; Hussinger, 2008). The theoretical and empirical literature points to a number of factors that are correlated to the probability of receiving a subsidy for R&D. Previous research has found that several firm characteristics, such as group membership, size, financial structure, past R&D and innovation efforts, export activity, industry context are correlated with public funding of R&D. The majority of these studies, beyond the heterogeneity of the support programs considered, showed that large firms who planned their innovation activity and had previous R&D experience were the main beneficiaries of subsidies. This has been interpreted as an indication that a ‘picking the winner strategy’ was adopted by public authorities in granting the subsidies.

In more detail the control variables used in our baseline specifications are the following:

**Firm size (lagged):** Evaluation studies suggest that larger firms are more likely to be subsidized than smaller firms. This is in part due to the positive relationship between firm size and innovation activities which has been extensively debated in the literature, showing that large firms benefit from economies of scale and scope, have a better organizational structure and suffer less from capital market imperfection (Cohen and Klepper, 1996). In the probit model, firm size is measured as the log of total number of employees.

---

3 Given the structure of our data for \(t\) has to be intended the years 2001-2003 and for \(t-1\) the years 1998-2000.
Past Innovative Behaviour Indicators: If policymakers follow a “picking the winner” strategy in allocating the public R&D funds, the probability of the receipt of public R&D funding is affected by the existing R&D staff and equipment and the innovative history of the firm. Research has shown that previous innovation activities, proxied by patents or by the presence of R&D departments, are positively related to the probability of being subsidized (Wallsten, 2000; Hussinger, 2008). Previous research activities influences the granting of subsidies because the firms that do more R&D are the ones that are the most likely to apply for subsidies. It is in fact to be expected that those firms with previous R&D experience which systematically plan their activities, detailing them in a plan, will find making the request for subsidies easier. In the model the innovative background is approximated by the percentage of R&D personnel over total employee and by a dummy variable indicating whether the firm introduced any innovation at time t-1 or not.

Skill structure (lagged): The skill structure of a firm's workforce is likely to positively influence its ability to access public funding. This effect is partly captured by the variable on R&D personnel, but will be also approximated by the share of employees with a university degree over total employee.

Export activity (lagged): Firms that export their products are usually exposed to strong international competition, and are likely to strengthen their competitiveness through innovation. Furthermore, one of the goals of R&D funding schemes may be to strengthen the competitiveness of firms in international markets. Thus, export activities can represent a signal for the allocation decision of the public R&D funds if policymakers are believed to be inclined to subsidize R&D projects with potentially high international market success (Blanes and Busom, 2004).

Other characteristics of the firm: We have considered other variables that might have an important discriminatory power between subsidised and non-subsidised firms. The relationship of these variables with innovation activities has been widely documented in the literature. In particular, the econometric specifications account for group membership, since firm belonging to a group may be better equipped to apply for a subsidy because resources at the corporate level, such as information, expertise and funds, are made available to the applicant; credit rationing (proxied by the percentage of firms declaring of having asked for additional funds being denied at t-1); the intensity of fixed capital investments measured as the log of fixed capital investments per employee at t-1. Finally, following the taxonomy introduced by Pavitt (1984), industry dummies have been considered in order to control for sectoral technological specificities.

In the following Table 6 we report the definition of the variables that will be used in the different specifications of the model on the persistence of R&D subsidies.

[Insert Table 6 here]
4.2 The impact evaluation analysis

The probit model previously described can also be used as the first step of an impact evaluation analysis on public R&D subsidies. In any empirical analysis designed to test the effect of public grants (treatment) on the targeted subjects (treated), it has to be taken into account that the receipt of a subsidy is not random, but rather is subject to different selection processes, both on firm’s and government’s side as discussed before. Several econometric methods have been developed in order to get reliable results in the presence of such selection bias (Cerulli, 2010). Among these, the approach based on matching methods, has been successfully applied to the evaluation of public R&D funding in the field of industrial economics. Such matching methodology has been widely used in recent years as estimation technique and is also applied in this study (Heckman et al., 1999, Blundell and Costa Dias, 2000; Almus and Czarnitzki, 2003; Hussinger, 2008).

The crucial research issue in this type of analyses is to measure the effect of public R&D support on firms’ innovation performances in the absence of counterfactual evidence, so that it is not possible to forecast the result of firms’ innovation performances in the absence of subsidies. The solution that can be adopted in such circumstances is to use the results of non-treated firms, with similar characteristics, to estimate the possible effect on treated companies had they not participated in public funded R&D programmes. The basic idea of matching is then to balance the sample of subsidy recipients and comparable non-recipients by selecting the best twin from the control group for each subsidized firm, so that the means of the outcome are comparable between the two groups. In this way, the differences in the means of the outcome variable between the treated and the selected control groups can be then attributed to the treatment (Rosenbaum and Rubin, 1983; Heckman et al. 1998).

In the ideal case, the best twin for a subsidized firm is the firm identical in all relevant characteristics. However, when the number of matching criteria is large, it would be very difficult to find any such observation. A solution to this problem is represented by the “propensity score” matching (PSM) method, proposed by Rosenbaum and Rubin (1983) who demonstrated that it is possible to reduce the multi-dimensionality of the matching procedure through the use of a synthetic mono-dimensional propensity score. The procedure consists in estimating the propensity score which is the probability of accessing R&D subsidies for the whole sample and find pairs of treated and non-treated that have the same probability value of participation. Usually, a ‘nearest neighbour’ matching is performed, so that the control observation with the estimated probability value closest to the participant is selected.

To estimate the causal effect of R&D subsidies, the PSM requires that the Conditional Independence Assumption (CIA) is met. The CIA implies that all the characteristics which influence both treatment and potential outcome have to be observed. While it cannot be tested whether the CIA is fulfilled or not, given the
broad range of variables in our dataset, it is reasonable that we have enough information on the firms to sufficiently approximate the treatment and the outcome so that this condition holds.

In addition, the assumption on common support and the stable unit treatment value assumption (SUTVA) have to be fulfilled in order to identify the average treatment effect. The common support demands that firms with the same characteristics have a positive probability of being both treated and not treated. This condition assures that for each treated observation a similar control can be found and can be directly imposed to our data when calculations are performed. The SUTVA requires that the treatment of a particular firm must not influence the outcome of other firms and its validity cannot be tested empirically (Rubin, 1990).

Finally, four important characteristics of the database used for the empirical analysis appear to be relevant for the effectiveness of the evaluation method adopted (Heckman, Ichimura and Todd, 1998). First, the information on both supported and not-supported firms derives from the same survey; second, the data contains a rich set of variables on firms’ structure and behaviour relevant to modelling the participation decision; third, the goodness of matching is facilitated by the presence of a large number of non-treated companies in the sample; finally, we could reduce problems due to endogeneity by using lagged variables as regressors which can satisfy more easily the weak exogeneity assumption with respect to the dependent variable.

5. Empirical results

Table 7 shows the results for different specifications of the probit model regarding the determinants of firms’ access to public R&D subsidies. Globally, the predictions of the probit models are good with about 80% of concordant predictions and levels of the likelihood ratio chi-square always suggesting that our models, as a whole, are statistically significant. Results in general show that, even after controlling for a number of firm and industry level characteristics, the probability of observing a subsidized company in period t is still positively and significantly affected by its R&D subsidy history. Hence, the estimated models confirm the picture emerged from the analysis on TPMs highlighting the presence of state dependence in the access of public R&D grants by firms, which, however, turns out to be shaped by specific firms’ idiosyncratic characteristics.

The introduction of a number of different control variables allows us to test the robustness of the relationships identified between past and current realization of the dependent variable. Among the relevant factors, the size of observed companies and the level of R&D capabilities, as measured by the share of internal R&D personnel over total employee, significantly enhance the probability of subsequent access to public R&D subsidies. The dummies associated with the Pavitt classes are also jointly significant in all specified models, confirming the importance of controlling for differentiated patterns of persistence in accessing public grants among different groups of economic sectors.
With respect to our research hypotheses these results have important implications. First, the stable significance of the coefficient associated with past R&D subsidies confirms that in analysing the issues related to the allocation of public R&D grants and in assessing their effectiveness it is important to look at the effects of persistence in the provision of public subsidies. Second, since this result is robust to the introduction of a number of relevant control variables we can claim that the access to R&D subsidies is characterised by state dependence, suggesting that some mechanism related to Matthew effects is at work. Third, the joint significance of the variable associated with the intensity of R&D capabilities previously accumulated, along with that related to past grants can be interpreted as a first indication that the identified Matthew effect is not necessarily vicious. The strength of firms’ technological capabilities would not be significant if the persistence was purely reputational because the past conditions related to grant’s assignment would play an exhaustive causal role. On the contrary, the detected persistence could be explained by the accumulation of expertise, tacit and codified knowledge by firms that had access to larger resources to conduct research in the past, also because of the previous allocation of public subsidies. Finally, our results show that larger and R&D intensive firms are perceived as more promising to be successful with their R&D projects and are, consequently, more likely to receive public R&D funding. We interpret this result as evidence that the distribution policy of public agencies favoured firms guaranteeing the technical viability of the subsidised projects. This suggests that public authorities followed a “picking the winner” strategy by encouraging firms with the best chances to successfully conduct the proposed R&D projects. As already stated, the adoption of such a strategy does not assure that the selected projects are necessarily the best, however, it may represent a practical way to reduce the ‘government failure’ costs associated with the selective assignment of public subsidies.

Such aspects can be further investigated through the evaluation impact analysis based on the Propensity Score Matching method described in the previous section. Table 8 reports the non-parametric estimation results of average treatment effect obtained throw nearest neighbour matching based on Probit Model 4. These allow us to assess the effect of public grants on firm’s R&D intensity and to evaluate the possible negative allocative distortions on productive resources generated by subsidies. Given that public resources are raised via socially costly revenue mechanisms, society will be worse off if the total R&D investment remains unaltered (Jaffe, 2002). In this context it seems evident that the case of full crowding-out can be interpreted as a clear sign that a pure reputation (vicious) Matthew effect prevails. On the contrary, evidence of additionality may signal the prevalence of a virtuous mechanism, where Matthew effects are consistent with a ‘picking the winners’ strategy, with potential benefits in the effectiveness of the adopted R&D policy instrument.

4 We have also applied nearest neighbour matching to the other models. It turned out that that our result are quite robust to different specifications and that Model 4 represents the most prudent model in terms of results obtained for the impact evaluation.
Table 8 displays the mean values for both subsidized firms and the control group of counterfactual. The unbiased estimator of the effectiveness of considered public R&D subsidies, shows that the average subsidized firm has significantly greater R&D expenditure per employee compared to a twin-firm not supported by this type of public intervention. This evidence suggests that our data support the hypothesis of additionality of R&D subsidies, which do not substitute private R&D investments. Since the outcome variable is expressed in euro per worker the result is easy to interpret. The average effect of being given a subsidy is €1821 per worker, confirming that grants have a positive effect on total investment in R&D. From a policy perspective this result implies that the considered policy is not fully distorsive, since it seems to support marginal R&D projects, which are expected to be privately low profitable and would be not pursued without a subsidy. In this respect the adopted strategy of ‘picking the winners’ appears to be capable of assuring a satisfying level of efficiency of the policy instrument. Moreover, such evidence represents a further indication that the identified persistence in grants’ allocation is not necessarily related to a **v vicious Matthew effect. In contrast, a **v**irtuous Matthew effect emerges as prevailing, so that the observed past dependence can be explained by the accumulation of expertise, tacit and codified knowledge by firms that had access to larger resources to conduct research in the past, because of the previous allocation of public subsidies. 

As a last step, in order to shed some light on the additionality or complementarity issue, we investigate whether grants induce firms to further increase private R&D investment as a response to public funding. As shown in the second row of Table 8 the average effect of grants on privately funded R&D, firms receiving subsidies are characterized by higher private R&D investments (more than € 400 per worker). However, the result is not sufficiently significant suggesting that differences between granted and non granted firms are ambiguous. Therefore, we conclude that the analyzed data do provide supporting evidence on the additionality of public R&D subsidies, although, consistently with other analyses on different Italian data (e.g. Evangelista, 2007) we cannot confirm the full complementarity between publicly and privately funded R&D.

### 6. Conclusions and policy implications

Public policy plays a key role in supporting R&D activities. Because of limited appropriability firms are likely to underinvest in the performance of R&D activities with substantial social losses in terms of inadequate supply of technological knowledge. A variety of policy tools have been applied to contrast the undersupply of technological knowledge ranging from the direct involvement of public authorities in the generation of technological and scientific knowledge within Universities and other public research centers, the procurement of technology intensive products, to the provision of subsidies to private firms performing R&D activities. A sharp debate contrasts the advocates of the merits of the provision of such public subsidies by means of automatic procedures, typically associated with
tax expenditures directed to firms able to exhibit their undertaking in R&D activities with the supporters of the advantages of discretionary allocation of grants based upon beauty context procedures.

The sources of ‘government failures’ in the case of discretionary procedures have been widely discussed in the literature, which mainly focused on the problems related to asymmetric information and interest group arguments. In this paper we propose a further potential critique to discretionary allocation of R&D subsidies, by recognising the possibility that a pathological persistence in the selective discrimination process may take place because past recipients have disproportionate access to public support with respect to other firms that never received such a grant. However, this critique deserved a careful assessment. In particular, the detailed analysis of the theoretical basis of the mertonian Matthew effect has enabled us to elaborate and substantiate analytically the distinction between virtuous and vicious Matthew effects. This distinction is quite important and deserves further investigation. Careful reading of Merton seminal contribution reveals that persistence in science and hence in research is not necessarily associated with perversion and sub-optimality.

Vicious Matthew effects are clearly at work when the recipients of public subsidies reduce the amount of private funding and actually substitute their internal funds with the public subsidies. Virtuous Matthew effects concern the cases of persistence in the assignment of public subsidies based on sheer reputation, even to firms that have actually reduced their commitment to research after receiving previous subsidies. Virtuous Matthew effects consist in the persistence of the provision of grants to firms that have been actually able to use previous subsidies to effectively increase their competence, their internal stock of technological knowledge and the flows of current R&D activities. Indeed persistence is at work: current behaviour is influenced by past awards, but such persistence reflects dynamic increasing returns in the generation of technological knowledge. The recent advances in the economics of knowledge confirm that the generation of new knowledge is characterized by the intrinsic cumulability of knowledge so that new knowledge is generated by means of the recombination of the existing stock of knowledge. The larger is the stock of knowledge possessed by each agent and the larger is the output of current R&D activities. The recurrent allocation of new grants to past recipients simply reflects the higher efficiency and better conduct of past recipients that have been able to take advantage and exploit past successes and build upon higher current performances. In this respect, virtuous Matthew effects are likely to increase the dynamic efficiency of a system as they are consistent with a ‘picking the winners strategy’ that supports the innovative capability of firms better able to accumulate technological competence and to be actually more innovative.

The relevance of these arguments has been tested by implementing a rich strategy of empirical analysis based on the exam of transition probabilities between states, the development of an original model on the determinants of firm’s access to R&D grants and on an evaluation impact analysis adopting the Propensity Score Matching method. Both the descriptive and econometric evidences show that past grants
increase the probability to access further funding and suggest that the access to public subsidies for R&D activities is indeed characterised by significant persistence. Our results reject the claim that discretionary procedures of allocation engender automatically perverse effects of persistence and exclusion. They show in fact that persistence is at work and yet it is not necessarily dysfunctional. On the opposite the empirical analysis provides evidence on the working of a positive persistence, i.e. *virtuous* Matthew effects in the Italian experience, which turns out to be coherent with the adoption of a ‘picking the winner strategy’ by public authorities.

Subsidies give to benefiting firms an artificial competitive edge and, consequently, have the potential to keep inefficient recipients alive and inducing a crowding out of non-subsidized firms. In order to minimize these distortions, subsidies should therefore be targeted at truly “good” firms. Moreover, while the evaluation of the potential outcome of a specific project might be particularly difficult to assess for public agencies, the general assessment of firms’ quality seems to be a task that can be performed more easily. It is a matter of looking at their performance in the past. Thus, the observation of persistent flows of R&D or patenting activities and the high level of human capital might represent crucial, objective indicators that public agencies may consider in taking their decisions. Within this context, firms that exhibit both a record of innovative investments and innovative performances above the average in the past might be more likely to be successful in the new innovative venture and hence should be selected in the program. Obviously, the adoption of a ‘picking-the-winner strategy’ cannot assure an optimal allocation of public resources so that the selected projects are necessarily the best. However, such a strategy may represent a viable way through which public authorities can reduce the ‘government failure’ costs associated with the selective assignment of public subsidies to R&D activities performed by private firms. When the decisions of selection committees are at least partially constrained by the adoption of objective criteria based on firm’s past performance, the tendency of assuming totally arbitrary choices, that might be affected by the lobbying activities of interest groups and by the maximising behaviour of policy makers or bureaucrats, could be reduced.
References


Aschhoff, B. (2010), Who Gets the Money? The Dynamics of R&D Project Subsidies in Germany, Jahrbücher für Nationalökonomie und Statistik 230(5), 522-546.


de Solla Price, D. J. (1963), Little science, big science, Columbia University Press,


Leuven E., Sianesi B. (2003). "PSMATCH2: Stata module to perform full
Mahalanobis and propensity score matching, common support graphing, and
covariate imbalance testing". http://ideas.repec.org/c/boc/bocode/s432001.html.

approach, Public Choice 31(1), 129-133.

D. C., 1997, Perspectives on public choice: A handbook. Cambridge University
Press, New York.

Economic Methodology, 13(4), 485-506.

Merito M., Giannangeli S., Bonaccorsi A. (2010) Do Incentives to Industrial R&D
Enhance Research Productivity and Firm Growth? Evidence from the Italian


and organizational change in manufacturing, Journal of Accounting and
Economics. 19. 179–208

Mitchell W.C., Munger, M.C., (1991), Economic model of interest groups: An

Mohnen. P., Röller. L.H. (2005), Complementarities in innovation policies,
European Economic Review 49, 1431-1450

Nelson R.R. (1959), The simple economics of basic scientific research, Journal of
Political Economy, n. 67, pp. 297-306.

of policy towards industrial R&D. Working Paper 840, Department of
Economics, Yale University.

Olson, M, (1982), The rise and decline of nations: Economic growth, stagflation, and social
rigidities, Yale University Press, New Haven.


Peters, B. (2009), Persistence of innovation: Stylized facts and panel data evidence,

Peltzman, S, (1976), Toward a more general theory of regulation, Journal of Law and

Rigney, D. (2010), The Matthew effect, How advantage begets further advantage, Columbia
University Press, New York.

evidence, Research Policy 37, 149-162.

Rosenbaum P. and D. Rubin (1983), The central role of the propensity score in
observational studies for causal effects. Biometrika 70, 41-55.

Rubin, D.B. (1990), Formal mode of statistical inference for causal effects, Journal of
Statistical Planning and Inference 25(3), 279-292.

Shane, S. A. (2009), Why encouraging more people to become entrepreneurs is bad
public policy, Small Business Economics, 33(2), 141-149.


## Tables

### Table 1 Sectoral composition of the sample

<table>
<thead>
<tr>
<th>NACE Rev. 1 Sectors</th>
<th>Number of firms</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOOD PRODUCTS AND BEVERAGES</td>
<td>48</td>
<td>6.38</td>
</tr>
<tr>
<td>TEXTILES</td>
<td>50</td>
<td>6.65</td>
</tr>
<tr>
<td>WEARING APPAREL, DRESSING AND DYING OF FUR</td>
<td>29</td>
<td>3.86</td>
</tr>
<tr>
<td>LEATHER, LEATHER PRODUCTS AND FOOTWEAR</td>
<td>29</td>
<td>3.86</td>
</tr>
<tr>
<td>WOOD AND PRODUCTS OF WOOD AND CORK</td>
<td>18</td>
<td>2.39</td>
</tr>
<tr>
<td>PULP, PAPER AND PAPER PRODUCTS</td>
<td>10</td>
<td>1.33</td>
</tr>
<tr>
<td>PRINTING AND PUBLISHING</td>
<td>7</td>
<td>0.93</td>
</tr>
<tr>
<td>COKE, Refined PETROLEUM PRODUCTS AND NUCLEAR FUEL</td>
<td>1</td>
<td>0.13</td>
</tr>
<tr>
<td>CHEMICALS AND CHEMICAL PRODUCTS</td>
<td>51</td>
<td>6.78</td>
</tr>
<tr>
<td>RUBBER AND PLASTICS PRODUCTS</td>
<td>42</td>
<td>5.59</td>
</tr>
<tr>
<td>OTHER NON-METALLIC MINERAL PRODUCTS</td>
<td>32</td>
<td>4.26</td>
</tr>
<tr>
<td>BASIC METALS</td>
<td>10</td>
<td>1.33</td>
</tr>
<tr>
<td>FABRICATED METAL PRODUCTS, except machinery and equipment</td>
<td>74</td>
<td>9.84</td>
</tr>
<tr>
<td>MACHINERY AND EQUIPMENT, N.E.C.</td>
<td>177</td>
<td>23.54</td>
</tr>
<tr>
<td>OFFICE, ACCOUNTING AND COMPUTING MACHINERY</td>
<td>6</td>
<td>0.8</td>
</tr>
<tr>
<td>ELECTRICAL MACHINERY AND APPARATUS, NEC</td>
<td>42</td>
<td>5.59</td>
</tr>
<tr>
<td>RADIO, TELEVISION AND COMMUNICATION EQUIPMENT</td>
<td>30</td>
<td>3.99</td>
</tr>
<tr>
<td>MEDICAL, PRECISION AND OPTICAL INSTRUMENTS</td>
<td>29</td>
<td>3.86</td>
</tr>
<tr>
<td>MOTOR VEHICLES, TRAILERS AND SEMI-TRAILERS</td>
<td>13</td>
<td>1.73</td>
</tr>
<tr>
<td>OTHER TRANSPORT EQUIPMENT</td>
<td>9</td>
<td>1.2</td>
</tr>
<tr>
<td>MANUFACTURING NEC</td>
<td>45</td>
<td>5.98</td>
</tr>
<tr>
<td>TOTAL</td>
<td>752</td>
<td>100</td>
</tr>
</tbody>
</table>

### Table 2 Summary statistics for the sample (years 2001-2003).

<table>
<thead>
<tr>
<th></th>
<th>Total Sample</th>
<th>Access to R&amp;D Subsidies</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>st dev</td>
</tr>
<tr>
<td>Number of employees</td>
<td>139.69</td>
<td>520.35</td>
</tr>
<tr>
<td>R&amp;D per employee (Euro)</td>
<td>3308.51</td>
<td>4896.34</td>
</tr>
<tr>
<td>Share of employees in R&amp;D (%)</td>
<td>8.46</td>
<td>8.96</td>
</tr>
<tr>
<td>Turnover (MEuro)</td>
<td>39.04</td>
<td>271.85</td>
</tr>
<tr>
<td>Fixed capital investments/Emp. (Euro)</td>
<td>5334.325</td>
<td>6506.06</td>
</tr>
<tr>
<td>Export</td>
<td>83.00%</td>
<td>85.12%</td>
</tr>
<tr>
<td>Access to R&amp;D Subsidies (2001-2003)</td>
<td>22.61%</td>
<td></td>
</tr>
</tbody>
</table>
Table 3 Transition probabilities between period T and T-1 along years 1998-2003. Full sample.

<table>
<thead>
<tr>
<th>T-1</th>
<th>T</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>0.451</td>
<td>(0.0493)</td>
<td>0.549</td>
</tr>
<tr>
<td>No</td>
<td>0.191</td>
<td>(0.0154)</td>
<td>0.809</td>
</tr>
</tbody>
</table>

Standard Errors in parentheses

Table 4 Transition probabilities between period T and T-1 along years 1998-2003 by size classes.

<table>
<thead>
<tr>
<th>Group of smallest companies</th>
<th>T-1</th>
<th>T</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>0.400</td>
<td>(0.0828)</td>
<td>0.600</td>
<td>(0.0828)</td>
</tr>
<tr>
<td>No</td>
<td>0.165</td>
<td>(0.0202)</td>
<td>0.835</td>
<td>(0.0202)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group of largest companies</th>
<th>T-1</th>
<th>T</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>0.478</td>
<td>(0.0610)</td>
<td>0.522</td>
<td>(0.0610)</td>
</tr>
<tr>
<td>No</td>
<td>0.219</td>
<td>(0.0234)</td>
<td>0.781</td>
<td>(0.0234)</td>
</tr>
</tbody>
</table>

Standard Errors in parentheses

Table 5 Transition probabilities between period T and T-1 along years 1998-2003 by class of R&D personnel intensity

<table>
<thead>
<tr>
<th>Class of R&amp;D personnel intensity</th>
<th>T-1</th>
<th>T</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowest 50%</td>
<td>Yes</td>
<td>0.361</td>
<td>(0.0801)</td>
<td>0.639</td>
</tr>
<tr>
<td>No</td>
<td>0.150</td>
<td>(0.0194)</td>
<td>0.850</td>
<td>(0.0194)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Highest 50%</th>
<th>T-1</th>
<th>T</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>0.500</td>
<td>(0.0615)</td>
<td>0.500</td>
<td>(0.0615)</td>
</tr>
<tr>
<td>No</td>
<td>0.235</td>
<td>(0.0240)</td>
<td>0.765</td>
<td>(0.0240)</td>
</tr>
</tbody>
</table>

Standard Errors in parentheses
Table 6 Definition of variables.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&amp;D_SUB</td>
<td>Dummy variable that equals one if the company has access to public R&amp;D subsidies</td>
</tr>
<tr>
<td>SIZE</td>
<td>Log of the number of employees</td>
</tr>
<tr>
<td>INNOV</td>
<td>Dummy variable that equals one if the company performs any innovation activity</td>
</tr>
<tr>
<td>R&amp;D_EMP</td>
<td>Share of R&amp;D personnel over total employee (%)</td>
</tr>
<tr>
<td>EXPORT</td>
<td>Dummy variable that equals one if the company exports</td>
</tr>
<tr>
<td>INV_EMP</td>
<td>Log of the fixed investments per employee performed by the company</td>
</tr>
<tr>
<td>GROUP</td>
<td>Dummy variable that equals one if the company belongs to a group</td>
</tr>
<tr>
<td>CRED_RAT</td>
<td>Dummy variable that equals one if the company declared having asked for credit being denied</td>
</tr>
<tr>
<td>DEG_EMP</td>
<td>Share of personnel with university degree over total employee (%)</td>
</tr>
<tr>
<td>PAVITT</td>
<td>Dummy variables for industry Pavitt classes</td>
</tr>
</tbody>
</table>

Table 7 Probit model. Dependent variable: Access to public R&D subsidies (R&D_SUB)

<table>
<thead>
<tr>
<th></th>
<th>Model (1)</th>
<th>Model (2)</th>
<th>Model (3)</th>
<th>Model (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&amp;D_SUB</td>
<td>0.60***</td>
<td>0.60***</td>
<td>0.58***</td>
<td>0.58***</td>
</tr>
<tr>
<td></td>
<td>(0.144)</td>
<td>(0.144)</td>
<td>(0.145)</td>
<td>(0.146)</td>
</tr>
<tr>
<td>SIZE (t-1)</td>
<td>0.11**</td>
<td>0.11**</td>
<td>0.12**</td>
<td>0.12**</td>
</tr>
<tr>
<td></td>
<td>(0.052)</td>
<td>(0.054)</td>
<td>(0.054)</td>
<td>(0.054)</td>
</tr>
<tr>
<td>R&amp;D_EMP (t-1)</td>
<td>0.01**</td>
<td>0.01**</td>
<td>0.01**</td>
<td>0.01**</td>
</tr>
<tr>
<td></td>
<td>(0.006)</td>
<td>(0.006)</td>
<td>(0.006)</td>
<td>(0.006)</td>
</tr>
<tr>
<td>CRED_RAT (t-1)</td>
<td>-0.05</td>
<td>-0.05</td>
<td>-0.06</td>
<td>-0.06</td>
</tr>
<tr>
<td></td>
<td>(0.141)</td>
<td>(0.141)</td>
<td>(0.142)</td>
<td>(0.142)</td>
</tr>
<tr>
<td>EXPORT (t-1)</td>
<td>-0.08</td>
<td>-0.08</td>
<td>-0.08</td>
<td>-0.08</td>
</tr>
<tr>
<td></td>
<td>(0.148)</td>
<td>(0.148)</td>
<td>(0.148)</td>
<td>(0.149)</td>
</tr>
<tr>
<td>GROUP (t-1)</td>
<td>-0.05</td>
<td>-0.05</td>
<td>-0.07</td>
<td>-0.07</td>
</tr>
<tr>
<td></td>
<td>(0.131)</td>
<td>(0.131)</td>
<td>(0.132)</td>
<td>(0.133)</td>
</tr>
<tr>
<td>INV_EMP (t-1)</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>(0.016)</td>
<td>(0.016)</td>
<td>(0.016)</td>
<td>(0.016)</td>
</tr>
<tr>
<td>DEG_EMP (t-1)</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td></td>
<td>(0.007)</td>
<td>(0.007)</td>
<td>(0.007)</td>
<td>(0.007)</td>
</tr>
<tr>
<td>INNOV (t-1)</td>
<td>-0.01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.124)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAVITT</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Constant</td>
<td>-1.36***</td>
<td>-1.37***</td>
<td>-1.39***</td>
<td>-1.39***</td>
</tr>
<tr>
<td></td>
<td>(0.247)</td>
<td>(0.256)</td>
<td>(0.258)</td>
<td>(0.258)</td>
</tr>
<tr>
<td>N. of firms</td>
<td>752</td>
<td>752</td>
<td>752</td>
<td>752</td>
</tr>
<tr>
<td>LR chi2</td>
<td>45.97***</td>
<td>45.97***</td>
<td>47.09***</td>
<td>47.09***</td>
</tr>
</tbody>
</table>

Robust Standard errors in parentheses, *** p<0.01, ** p<0.05, * p<0.10
Table 8 Estimation of the ATT with the Nearest Neighbour Matching method Based on Model (4)

<table>
<thead>
<tr>
<th>Outcome Variable</th>
<th>Mean</th>
<th>Difference</th>
<th>t-test</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Treated</td>
<td>Control</td>
<td></td>
</tr>
<tr>
<td>R&amp;D /EMPLOYEE</td>
<td>5241.9</td>
<td>3420.7</td>
<td>1821.1</td>
</tr>
<tr>
<td>PRIVATE R&amp;D /EMPLOYEE</td>
<td>3751.8</td>
<td>3295.5</td>
<td>456.3</td>
</tr>
</tbody>
</table>

*** p<0.01, ** p<0.05, * p<0.10